Improving Power Performance Measurements

Laura Browne, Plant Performance, Senvion Wind Industry Forum 21.03.2019

Power Performance Measurements... Quick overview

What?	Compare Turbine Performance - Actual vs. Guaranteed		
Why?	Driven by project financiers		
How?	Traditionally		
Project Phase	Pre-turbine Installation	Wind Farm Operation	
Flat Terrain	(No action required)	Wind speed Power generation Measure power performance	
Complex Terrain	Establish relationship between locations (Two masts required) Mast location Turbine location Site Calibration	Wind speed Power generation Measure power performance	

Proven Power Performance

DNV·GL	Number of measurements	Number of measured turbines	Ratio EMAEP/ GAEP [%]
MM ₈₂	17	16	101.1% min / max results 97.7 – 106.8
MM ₉₂	33	31	100.0% min / max results 96.4 – 105.0
MM100	2	2	100.1% min / max results 100.0 – 100.2
3.0M ₁₂₂	1	1	100.1% min / max results n/a – n/a
3.2 M ₁₁₄	2	2	101.1% min / max results 100.6 – 101.7
3.4M ₁₀₄	5	5	100.5% min / max results 98.2 – 103.1
3.4M ₁₁₄	1	1	100.1% min / max results n/a – n/a
3.6 M 774	1	1	100.5% min / max results n/a – n/a
<i>5</i> M	1	1	100.9% min / max results n/a – n/a
6.2M ₁₂₆	2	2	101.6% min / max results 101.2 – 102.0
6.2M ₁₅₂	1	1	101.7% min / max results n/a – n/a

Power Performance Validation

- Conducted by independent measurement institutes
- Measurements reviewed by DNV GL
- Extensive data set of 66 measurement campaigns
- Comparison of Extrapolated Measured Annual Energy Production (EMAEP) and Guaranteed Annual Energy Production (GAEP)
- High power curve accuracy of 100.4% for the observed Senvion portfolio

Industry standard guarantees power performance of 100% minus measurement uncertainty

Source: DNV GL, results as of January 2018

Aim & Agenda

Remember	Not a legal requirement!	
	Choosing which test procedure to apply is purely a commercial (and technical) decision	
Question	What to consider so measurement fits project and financiers expectations?	
Agenda	PPM Drivers Recent changes to the industry standard (IEC 61400-12 series) Successful implementation	

Power Performance Measurements Drivers & Development

Power Performance Measurements

Drivers & Considerations

Driven primarily by financiers

Stakeholders

Financial

- PPM negotiated during project financing
- Can incur payment of damages
- Pre-construction resource assessment assumptions

Markets

- Not a feature of all markets
- Common in Australia (large wind farms)
- Typical guarantee:100% performance minusmeasurement uncertainty

Cost

- Measurement campaigns can be expensive
- Site calibration doubles mast requirements
- May not be economic for small (1-2 turbine) projects

Who's involved?

- Developers / Owners
- Turbine manufacturers (OEMs)
- Lenders / Financiers
- Mast / instrument suppliers
- Independent measurement bodies
- Landholders
- Department of Planning
- Project management / schedulers

Development of International Standard

IEC 61400-12-1 ed. 2 (2017) Changing landscape

IEC 61400-12-1 ed. 2 (2017)

What's changed?

We make wind perform.

Remote Sensing Devices (RSDs) permitted (LiDAR and SoDAR)

Rotor Equivalent Wind Speed (REWS)

New criteria for site calibration

Uncertainty Annex updated

What else is new? Quite a bit!

2017 version is three times longer than 2005.

New annex on mast induced flow distortion, revision to anemometer classifications, inclusion of ultrasonic anemometers, revision of air density correction, interpolation to bin centre method, cold climate annex added, database A changed to special database...

Measurement Configuration Options

Remote Sensing Devices (RSDs) - LiDAR & SoDAR

RSDs - LiDAR & SoDARs

Benefits

- Measure at multiple heights from ground level
- Cost compared to mast
- Mobility / re-use

Flat Terrain Only

Short mast* & RSD

*Min. 40 m or Lower Tip Height

Limitations

- Use in flat terrain only
- Hub height mast still required for RSD calibration (on / off-site)
- Cost benefit likely on flat sites with >1 PPM
- Pre- and post-calibration required (test timing)
- Single point of failure (lack of redundancy in measurement equipment)

*does not remove need for hub height mast

Rotor Equivalent Wind Speed (REWS)

Variation across rotor (used instead of hub height wind speed)

Rotor Equivalent Wind Speed (REWS)

Benefits

- Better captures wind conditions across rotor plane
 - particularly for larger turbines
- Allows for variation in wind speed (shear) and direction (veer)

Limitations

- Measurements >HH required (at least H + 2/3R)
- Additional equipment required
- Performance based on REWS must be compared to a power curve referenced to REWS (not hub height wind speed)

Terrain & Obstacle Assessment

Driving requirement for site calibration

What's changed?

- Area to be assessed around the test turbine
- Impact is site dependent
- Site calibration is now / no longer required

Figure B.1 – Illustration of area to be assessed, top view 'L' is the distance between the mast and test turbine (must be between 2-4 D, 2.5 is recommended)

Terrain Assessment

Drives requirement for site calibration

- Determines if a site is complex
- In complex sites, RSDs cannot be used & site calibration (two masts) required per test

Site Calibration

Impacts

- Required in complex terrain only (masts must be used)
- Masts required before turbine is installed (schedule)
- Doubles number of masts required (cost)

Uncertainty Assessment

Measurement Uncertainty

What is it?

- All measurements have a degree of uncertainty
 e.g. limitations of instrumentation (systematic error)
- Typical Power Performance Guarantee is 100% performance minus measurement uncertainty

What's changed?

- Uncertainty to allow for various instrumentation configurations and new assessments e.g. REWS
- Penalties apply if no correction for wind shear and wind veer is made

Impact?

- Not necessarily better / worse project specific
- Much more involved process (time and effort by measurement bodies)

Implementation Building on success

Implementing Successful PPM

	Early Collaboration	Campaign Design	Implementation
Mast / Instrument Suppliers	Procurement	Measurement equipment	Installation and reporting
Independent Measurement Bodies	Power performance test plan	Siting masts	Regular progress updates
Owners / Developers / Financiers	 Align on test procedure Planning permission and associated environmental impact assessments 	 Configuration which meets financial objectives 	Achieve contractual guarantees
Original Equipment Suppliers	 Align on test procedure (filters, timing, retest) Scheduling Site specific power curve 	Consideration of build schedule	Monitor progressAchieve contractual guarantees

Take away

Drivers

Financiers expectations

PPM is a commercial decision

Options are Available

IEC 2005 / 2013 / 2017 – Later not necessarily greater

Site-by-site decision which is most appropriate

(Measurement configuration, site calibration, cost, financiers expectations)

Successful Implementation

Early collaboration

Alignment between stakeholders on test procedure and best way forward.

Thank you.

Catch us in the Operations & Maintenance session at 3:30 pm today Katrina Swalwell will be presenting on LCOE Optimisation

Senvion is currently recruiting
Visit Senvion Careers page for more information

Senvion
Laura Browne
Plant Performance

© Senvion

All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photography, recording, or any information storage and retrieval system, without permission from Senvion.

